- Wide Operating Voltage Range of 2 V to 6 V
- Typical Switch Enable Time of 18 ns
- Low Power Consumption, 20- $\mu \mathrm{A}$ Max ICC
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- High Degree of Linearity
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State Impedance ...
$50-\Omega$ TYP at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
- Individual Switch Controls

D, DB, N, NS, OR PW PACKAGE
(TOP VIEW)

	U	
1A 1	$1 \quad 14$	V_{CC}
1B ${ }^{2}$	213	1C
2 B -3	$3 \quad 12$	4C
2 A 4	411	4A
2C 5	510	4B
3C 6	$6 \quad 9$	3B
GND [7	7 8	3A

description/ordering information

The SN74HC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 6 V (peak) to be transmitted in either direction.

Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube of 25	SN74HC4066N	SN74HC4066N
	SOIC - D	Tube of 50	SN74HC4066D	HC4066
		Reel of 2500	SN74HC4066DR	
		Reel of 250	SN74HC4066DT	
	SOP - NS	Reel of 2000	SN74HC4066NSR	HC4066
	SSOP - DB	Reel of 2000	SN74HC4066DBR	HC4066
	TSSOP - PW	Tube of 90	SN74HC4066PW	HC4066
		Reel of 2000	SN74HC4066PWR	
		Reel of 250	SN74HC4066PWT	

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
FUNCTION TABLE
(each switch)

INPUT CONTROL (C)	SWITCH
L	OFF
H	ON

logic diagram, each switch (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		$2 \dagger$	5	6	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	I/O port voltage		0		V_{CC}	V
V_{IH}	High-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15		V_{CC}	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2		V_{CC}	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		0.9	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		1.2	
$\Delta t / \Delta v$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

\dagger With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.
NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
			MIN		TYP	MAX					
$r_{\text {on }}$	On-state switch resistance			$\begin{aligned} & \mathrm{IT}_{\mathrm{T}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=0 \text { to } \mathrm{V}_{\mathrm{C}}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}}(\text { see Figure } 1) \end{aligned}$	2 V		150				Ω
			4.5 V			50	85		106		
			6 V			30					
ron(p)	Peak on-state resistance		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{T}}=-1 \mathrm{~mA} \end{aligned}$	2 V		320				Ω	
			4.5 V		70	170		215			
			6 V		50						
1	Control input current			$\mathrm{V}_{\mathrm{C}}=0$ or V_{CC}	6 V		± 0.1	± 100		± 1000	nA
$\mathrm{I}_{\text {soff }}$	Off-state switch leakage current			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {IL }} \text { (see Figure 2) } \end{aligned}$	6 V			± 0.1		± 5	$\mu \mathrm{A}$
Ison	On-state switch leakage current		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (see Figure } 3 \text {) } \end{aligned}$	6 V			± 0.1		± 5	$\mu \mathrm{A}$	
ICC	Supply current		$\mathrm{V}_{\mathrm{I}}=0$ or $\mathrm{V}_{\mathrm{CC}}, \quad \mathrm{l} \mathrm{O}=0$	6 V			2		20	$\mu \mathrm{A}$	
C_{i}	Input capacitance	A or B		5 V	9					pF	
		C				3	10		10		
C_{f}	Feed-through capacitance	A to B	$V_{l}=0$			0.5				pF	
C_{0}	Output capacitance	A or B		5 V		9				pF	

SCLS325G - MARCH 1996 - REVISED JULY 2003
switching characteristics over recommended operating free-air temperature range

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		TYP	UNIT
$\mathrm{C}_{\text {pd }}$ Power dissipation capacitance per gate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{f}=1 \mathrm{MHz}$	45	pF
Minimum through bandwidth, A to B or B to $\mathrm{A}^{\dagger}\left[20 \log \left(\mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{l}}\right)\right]=-3 \mathrm{~dB}$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \text { (see Figure 8) } \end{aligned}$	30	MHz
Crosstalk between any switches \ddagger	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { (see Figure 9) } \end{aligned}$	45	dB
Feed through, switch off, A to B or B to $\mathrm{A} \ddagger$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \text { (see Figure 10) } \end{aligned}$	42	dB
Amplitude distortion rate, A to B or B to A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \text { (see Figure 11) } \end{aligned}$	0.05\%	

\dagger Adjust the input amplitude for output $=0 \mathrm{dBm}$ at $\mathrm{f}=1 \mathrm{MHz}$. Input signal must be a sine wave.
\ddagger Adjust the input amplitude for input $=0 \mathrm{dBm}$ at $\mathrm{f}=1 \mathrm{MHz}$. Input signal must be a sine wave.

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}} \\
& \text { CONDITION 1: } \mathrm{V}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}} \\
& \text { CONDITION 2: } \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}}, \mathrm{~V}_{\mathrm{B}}=0
\end{aligned}
$$

Figure 2. Off-State Switch Leakage-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

$\mathrm{v}_{\mathrm{A}}=\mathrm{V}_{\mathrm{CC}}$ TO GND
Figure 3. On-State Leakage-Current Test Circuit

Figure 4. Propagation Delay Time, Signal Input to Signal Output

PARAMETER MEASUREMENT INFORMATION

Figure 5. Switching Time ($\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$), Control to Signal Output

Figure 6. Control-Input Frequency

Figure 7. Control Feed-Through Noise

Figure 8. Minimum Through Bandwidth

PARAMETER MEASUREMENT INFORMATION

$$
\left(\mathrm{V}_{\mathrm{I}}=0 \mathrm{dBm} \text { at } \mathrm{f}=1 \mathrm{MHz}\right)
$$

Figure 9. Crosstalk Between Any Two Switches

Figure 10. Feed Through, Switch Off

Figure 11. Amplitude-Distortion Rate

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
SN74HC4066D	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DBLE	OBSOLETE	SSOP	DB	14		TBD	Call TI	Call TI
SN74HC4066DBR	ACTIVE	SSOP	DB	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DBRE4	ACTIVE	SSOP	DB	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DE4	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DRE4	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DT	ACTIVE	SOIC	D	14	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066DTE4	ACTIVE	SOIC	D	14	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74HC4066NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74HC4066NSR	ACTIVE	SO	NS	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74HC4066NSRG4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PW	ACTIVE	TSSOP	PW	14	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74HC4066PWE4	ACTIVE	TSSOP	PW	14	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74HC4066PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
SN74HC4066PWR	ACTIVE	TSSOP	PW	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74HC4066PWT	ACTIVE	TSSOP	PW	14	250	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74HC4066PWTE4	ACTIVE	TSSOP	PW	14	250	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
 Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements

