

# $\begin{array}{c} \textbf{0.5} \ \Omega \ \textbf{CMOS, Dual} \\ \textbf{2:1 MUX/SPDT Audio Switch} \end{array}$

## **ADG884**

#### **FEATURES**

1.8 V to 5.5 V operation
Ultralow on resistance
0.34 Ω typ
0.38 Ω max at 5 V supply
Excellent audio performance, ultralow distortion
0.1 Ω typ
0.15 Ω max R<sub>ON</sub> flatness
High current carrying capability
400 mA continuous
600 mA peak current at 5 V supply
Rail-to-rail switching operation
Typical power consumption (<0.1 μW)</li>

#### **APPLICATIONS**

Cellular phones PDAs MP3 players Power routing Battery-powered systems PCMCIA cards Modems Audio and video signal routing Communications systems

#### **GENERAL DESCRIPTION**

The ADG884 is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than 0.4  $\Omega$  over the full temperature range, making the part an ideal solution for applications that require minimal distortion through the switch. The ADG884 also has the capability of carrying large amounts of current, typically 600 mA at 5 V operation.

The ADG884 is available in a 10 bump, 2.0 mm  $\times$  1.50 mm WLCSP package, a 10-lead LFCSP package, and a 10-lead MSOP package. These tiny packages make the ADG884 the ideal solution for space-constrained applications.

When on, each switch conducts equally well in both directions and has an input signal range that extends to the supplies. The ADG884 exhibits break-before-make switching action.

Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

#### FUNCTIONAL BLOCK DIAGRAM

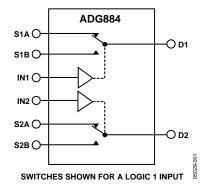



Figure 1.

#### **PRODUCT HIGHLIGHTS**

- 1. Single 1.8 V to 5.5 V operation.
- 2. High current handling capability (400 mA continuous current at 3.3 V).
- 3. 1.8 V logic-compatible.
- 4. Low THD + N (0.01% typ).
- 5. Tiny 2 mm × 1.5 mm WLCSP package, 3 mm × 3 mm 10-lead LFCSP package, and 10-lead MSOP package.

#### Table 1. ADG884 Truth Table

| Logic (IN1/IN2) | Switch 1A/2A | Switch 1B/2B |
|-----------------|--------------|--------------|
| 0               | Off          | On           |
| 1               | On           | Off          |

### TABLE OF CONTENTS

| Specifications                               | 3 |
|----------------------------------------------|---|
| Absolute Maximum Ratings                     | 6 |
| ESD Caution                                  | 6 |
| Pin Configurations and Function Descriptions | 7 |
| Typical Performance Characteristics          | 8 |

| Terminology        | 11 |
|--------------------|----|
| Test Circuits      | 12 |
| Outline Dimensions | 14 |
| Ordering Guide     | 15 |

#### **REVISION HISTORY**

| 6/05—Rev. 0 to Rev. A        |   |
|------------------------------|---|
| Updated Outline Dimensions 1 | 4 |
| Changes to Ordering Guide 1  | 5 |

#### 10/04—Revision 0: Initial Version

### **SPECIFICATIONS**

 $V_{\text{DD}}$  = 5 V  $\pm$  10%, GND = 0 V, unless otherwise noted.  $^{1}$ 

#### Table 2.

| Parameter                                                | 25°C  | -40°C to +85°C         | Unit    | Test Conditions/Comments                                                                            |  |
|----------------------------------------------------------|-------|------------------------|---------|-----------------------------------------------------------------------------------------------------|--|
| ANALOG SWITCH                                            |       |                        |         |                                                                                                     |  |
| Analog Signal Range                                      |       | 0 V to V <sub>DD</sub> | V       |                                                                                                     |  |
| On Resistance, R <sub>on</sub>                           | 0.28  |                        | Ωtyp    | $V_{DD} = 4.5 \text{ V}, V_S = 0 \text{ V} \text{ to } V_{DD}, I_S = 100 \text{ mA}$                |  |
|                                                          | 0.34  | 0.38                   | Ωmax    | See Figure 18                                                                                       |  |
| On Resistance Match Between                              | 0.01  |                        | Ωtyp    | $V_{DD} = 4.5 \text{ V}, \text{ V}_{\text{S}} = 2 \text{ V}, \text{ I}_{\text{S}} = 100 \text{ mA}$ |  |
| Channels, ΔR <sub>on</sub>                               | 0.035 | 0.05                   | Ωmax    |                                                                                                     |  |
| On Resistance Flatness, R <sub>FLAT</sub> (ON)           | 0.1   |                        | Ωtyp    | $V_{DD} = 4.5 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{ V}_{DD}$                    |  |
|                                                          | 0.13  | 0.15                   | Ωmax    | Is = 100 mA                                                                                         |  |
| LEAKAGE CURRENTS                                         |       |                        |         | $V_{DD} = 5.5 V$                                                                                    |  |
| Source Off Leakage, Is (OFF)                             | ±0.2  |                        | nA typ  | $V_{\rm S} = 0.6 \text{ V}/4.5 \text{ V}, V_{\rm D} = 4.5 \text{ V}/0.6 \text{ V};$ see Figure 19   |  |
| Channel On Leakage, I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.2  |                        | nA typ  | $V_{s} = V_{D} = 0.6$ V or 4.5 V; see Figure 20                                                     |  |
| DIGITAL INPUTS                                           |       |                        |         |                                                                                                     |  |
| Input High Voltage, V <sub>INH</sub>                     |       | 2.0                    | V min   |                                                                                                     |  |
| Input Low Voltage, VINL                                  |       | 0.8                    | V max   |                                                                                                     |  |
| Input Current, Incl or Inh                               | 0.005 |                        | μA typ  | $V_{IN} = V_{INL} \text{ or } V_{INH}$                                                              |  |
| -                                                        |       | ±0.1                   | µA max  |                                                                                                     |  |
| Digital Input Capacitance, C <sub>IN</sub>               | 2     |                        | pF typ  |                                                                                                     |  |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                     |       |                        |         |                                                                                                     |  |
| t <sub>on</sub>                                          | 42    |                        | ns typ  | $R_L = 50 \Omega, C_L = 35 pF$                                                                      |  |
|                                                          | 50    | 53                     | ns max  | $V_s = 3 V/0 V$ ; see Figure 21                                                                     |  |
| toff                                                     | 15    |                        | ns typ  | $R_L = 50 \Omega, C_L = 35 pF$                                                                      |  |
|                                                          | 20    | 21                     | ns max  | $V_s = 3 V$ ; see Figure 21                                                                         |  |
| Break-Before-Make Time Delay, t <sub>BBM</sub>           | 16    |                        | ns typ  | $R_L = 50 \Omega, C_L = 35 pF$                                                                      |  |
|                                                          |       | 10                     | ns min  | $V_{s1} = V_{s2} = 1.5 V$ ; see Figure 22                                                           |  |
| Charge Injection                                         | 125   |                        | pC typ  | $V_s = 1.5 V$ , $R_s = 0 \Omega$ , $C_L = 1 nF$ ; see Figure 23                                     |  |
| Off Isolation                                            | -60   |                        | dB typ  | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 100 kHz$ ;                                                  |  |
|                                                          |       |                        |         | see Figure 24                                                                                       |  |
| Channel-to-Channel Crosstalk                             | -120  |                        | dB typ  | S1A–S2A/S1B–S2B, $R_L = 50 \Omega$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 27                   |  |
|                                                          | -60   |                        | dB typ  | S1A–S1B/S2A–S2B, $R_L = 50 \Omega$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 25                   |  |
| Total Harmonic Distortion, THD + N                       | 0.017 |                        | %       | $R_L = 32 \Omega$ , f = 20 Hz to 20 kHz,<br>V <sub>s</sub> = 3.5 V p-p                              |  |
| Insertion Loss                                           | -0.03 |                        | dB typ  | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                                    |  |
| –3 dB Bandwidth                                          | 18    |                        | MHz typ | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                                    |  |
| Cs (OFF)                                                 | 103   |                        | pF typ  |                                                                                                     |  |
| C <sub>D</sub> , C <sub>s</sub> (ON)                     | 295   |                        | pF typ  |                                                                                                     |  |
| POWER REQUIREMENTS                                       |       |                        | 1 77    | $V_{DD} = 5.5 V$                                                                                    |  |
|                                                          | 0.003 |                        | μA typ  | Digital inputs = $0 \text{ V}$ or 5.5 V                                                             |  |
|                                                          |       | 1                      | µA max  |                                                                                                     |  |

 $^1$  Temperature range of the B version is  $-40^\circ C$  to  $+85^\circ C.$   $^2$  Guaranteed by design, not subject to production test.

 $V_{\rm DD}$  = 3.4 V to 4.2 V; GND = 0 V, unless otherwise noted.  $^1$ 

#### Table 3.

| Parameter                                                | 25°C  | -40°C to +85°C         | Unit    | Test Conditions/Comments                                                              |  |
|----------------------------------------------------------|-------|------------------------|---------|---------------------------------------------------------------------------------------|--|
| ANALOG SWITCH                                            |       |                        |         |                                                                                       |  |
| Analog Signal Range                                      |       | 0 V to V <sub>DD</sub> | V       |                                                                                       |  |
| On Resistance, Ron                                       | 0.33  |                        | Ωtyp    | $V_{DD} = 3.4 V$ , $V_{S} = 0 V$ to $V_{DD}$ , $I_{S} = 100 mA$                       |  |
|                                                          | 0.38  | 0.45                   | Ωmax    | See Figure 18                                                                         |  |
| On Resistance Match Between                              | 0.013 |                        | Ωtyp    | $V_{DD} = 3.4 V$ , $V_S = 2 V$ , $I_S = 100 mA$                                       |  |
| Channels, $\Delta R_{ON}$                                | 0.042 | 0.065                  | Ωmax    |                                                                                       |  |
| On Resistance Flatness, R <sub>FLAT</sub> (ON)           | 0.13  |                        | Ωtyp    | $V_{DD} = 3.4 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{ V}_{DD}$      |  |
|                                                          | 0.155 | 0.175                  | Ωmax    | $I_{s} = 100 \text{ mA}$                                                              |  |
| LEAKAGE CURRENTS                                         |       |                        |         | V <sub>DD</sub> = 4.2 V                                                               |  |
| Source Off Leakage, Is (OFF)                             | ±0.2  |                        | nA typ  | $V_{s} = 0.6 V/3.9 V$ , $V_{D} = 3.9 V/0.6 V$ ; see Figure 19                         |  |
| Channel On Leakage, I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.2  |                        | nA typ  | $V_{s} = V_{D} = 0.6 V \text{ or } 3.9 V$ ; see Figure 20                             |  |
| DIGITAL INPUTS                                           |       |                        |         |                                                                                       |  |
| Input High Voltage, V <sub>INH</sub>                     |       | 2.0                    | V min   |                                                                                       |  |
| Input Low Voltage, VINL                                  |       | 0.8                    | V max   |                                                                                       |  |
| Input Current, I <sub>INL</sub> or I <sub>INH</sub>      | 0.005 |                        | μA typ  | $V_{IN} = V_{INL} \text{ or } V_{INH}$                                                |  |
| •                                                        |       | ±0.1                   | μA max  |                                                                                       |  |
| Digital Input Capacitance, C <sub>№</sub>                | 2     |                        | pF typ  |                                                                                       |  |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                     |       |                        |         |                                                                                       |  |
| ton                                                      | 42    |                        | ns typ  | $R_L = 50 \Omega, C_L = 35 pF$                                                        |  |
|                                                          | 50    | 54                     | ns max  | V <sub>s</sub> = 1.5 V/0 V; see Figure 21                                             |  |
| toff                                                     | 15    |                        | ns typ  | $R_{L} = 50 \Omega, C_{L} = 35 pF$                                                    |  |
|                                                          | 21    | 24                     | ns max  | $V_s = 1.5 V$ ; see Figure 21                                                         |  |
| Break-Before-Make Time Delay, tBBM                       | 17    |                        | ns typ  | $R_L = 50 \Omega, C_L = 35 pF$                                                        |  |
|                                                          |       | 10                     | ns min  | $V_{s1} = V_{s2} = 1.5 V$ ; see Figure 22                                             |  |
| Charge Injection                                         | 100   |                        | pC typ  | $V_s = 1.5 V$ , $R_s = 0 \Omega$ , $C_L = 1 nF$ ; see Figure 23                       |  |
| Off Isolation                                            | -60   |                        | dB typ  | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 100 kHz$ ;<br>see Figure 24                   |  |
| Channel-to-Channel Crosstalk                             | -120  |                        | dB typ  | S1A–S2A/S1B–S2B, $R_L = 50 \Omega$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 27     |  |
|                                                          | -60   |                        | dB typ  | S1A–S1B/S2A–S2B, $R_L = 50 \Omega$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 25     |  |
| Total Harmonic Distortion, THD + N                       | 0.01  |                        | %       | $R_L = 32 \Omega$ , $f = 20 \text{ Hz}$ to 20 kHz,<br>$V_S = 2 \text{ V} \text{ p-p}$ |  |
| Insertion Loss                                           | -0.03 |                        | dB typ  | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                      |  |
| –3 dB Bandwidth                                          | 18    |                        | MHz typ | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                      |  |
| C <sub>s</sub> (OFF)                                     | 110   |                        | pF typ  |                                                                                       |  |
| C <sub>D</sub> , C <sub>s</sub> (ON)                     | 300   |                        | pF typ  |                                                                                       |  |
| POWER REQUIREMENTS                                       |       |                        |         | $V_{DD} = 4.2 V$                                                                      |  |
| lod                                                      | 0.003 |                        | μA typ  | Digital inputs = 0 V or 4.2 V                                                         |  |
|                                                          |       | 1                      | µA max  |                                                                                       |  |

 $^1$  Temperature range of the B version is  $-40^\circ\text{C}$  to  $+85^\circ\text{C}.$   $^2$  Guaranteed by design, not subject to production test.

 $V_{\text{DD}}$  = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.  $^{1}$ 

#### Table 4.

| Parameter                                                | 25°C  | -40°C to +85°C         | Unit    | Test Conditions/Comments                                                                           |
|----------------------------------------------------------|-------|------------------------|---------|----------------------------------------------------------------------------------------------------|
| ANALOG SWITCH                                            |       |                        |         |                                                                                                    |
| Analog Signal Range                                      |       | 0 V to V <sub>DD</sub> | V       |                                                                                                    |
| On Resistance, Ron                                       | 0.4   |                        | Ωtyp    | $V_{DD} = 2.7 V, V_{S} = 0 V to V_{DD}$                                                            |
|                                                          | 0.5   | 0.6                    | Ωmax    | I <sub>s</sub> = 100 mA; see Figure 18                                                             |
| On Resistance Match Between                              | 0.02  |                        | Ωtyp    | $V_{DD} = 2.7 \text{ V}, \text{ V}_{\text{S}} = 0.6 \text{ V}$                                     |
| Channels, ΔR <sub>ON</sub>                               | 0.07  | 0.1                    | Ωmax    | Is = 100 mA                                                                                        |
| On Resistance Flatness, R <sub>FLAT</sub> (ON)           | 0.18  |                        | Ωtyp    | $V_{DD} = 2.7 \text{ V}, \text{ V}_{\text{S}} = 0 \text{ V} \text{ to } \text{V}_{\text{DD}}$      |
|                                                          |       | 0.25                   | Ωmax    | $I_{s} = 100 \text{ mA}$                                                                           |
| LEAKAGE CURRENTS                                         |       |                        |         | $V_{DD} = 3.6 V$                                                                                   |
| Source Off Leakage, Is (OFF)                             | ±0.2  |                        | nA typ  | $V_{\rm S} = 0.6 \text{ V}/3.3 \text{ V}, V_{\rm D} = 3.3 \text{ V}/0.6 \text{ V}$ , see Figure 19 |
| Channel On Leakage, I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.2  |                        | nA typ  | $V_{S} = V_{D} = 0.6 V \text{ or } 3.3 V$ ; see Figure 20                                          |
| DIGITAL INPUTS                                           |       |                        |         |                                                                                                    |
| Input High Voltage, V <sub>INH</sub>                     |       | 1.3                    | V min   |                                                                                                    |
| Input Low Voltage, V <sub>INL</sub>                      |       | 0.8                    | V max   |                                                                                                    |
| Input Current, IINL or IINH                              | 0.005 |                        | μA typ  | $V_{IN} = V_{INL} \text{ or } V_{INH}$                                                             |
|                                                          |       | ±0.1                   | μA max  |                                                                                                    |
| Digital Input Capacitance, C <sub>IN</sub>               | 2     |                        | pF typ  |                                                                                                    |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                     |       |                        |         |                                                                                                    |
| t <sub>on</sub>                                          | 42    |                        | ns typ  | $R_L = 50 \Omega$ , $C_L = 35 pF$                                                                  |
|                                                          | 56    | 62                     | ns max  | $V_S = 1.5 V/0 V$ ; see Figure 21                                                                  |
| toff                                                     | 14    |                        | ns typ  | $R_L = 50 \ \Omega, \ C_L = 35 \ pF$                                                               |
|                                                          | 19    | 21                     | ns max  | $V_s = 1.5 V$ ; see Figure 21                                                                      |
| Break-Before-Make Time Delay, tBBM                       | 24    |                        | ns typ  | $R_L = 50 \ \Omega$ , $C_L = 35 \ pF$                                                              |
|                                                          |       | 10                     | ns min  | $V_{S1} = V_{S2} = 1.5 V$ ; see Figure 22                                                          |
| Charge Injection                                         | 85    |                        | pC typ  | $V_s = 1.25 V$ , $R_s = 0 \Omega$ , $C_L = 1 nF$ ; see Figure 23                                   |
| Off Isolation                                            | -60   |                        | dB typ  | $R_{L}$ = 50 $\Omega,$ $C_{L}$ = 5 pF, f = 100 kHz; see Figure 24                                  |
| Channel-to-Channel Crosstalk                             | -120  |                        | dB typ  | $S1A-S2A/S1B-S2B$ , $R_L = 50 V$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 27                    |
|                                                          | -60   |                        | dB typ  | S1A–S1B/S2A–S2B, $R_L = 50 \Omega$ , $C_L = 5 pF$ ,<br>f = 100 kHz; see Figure 25                  |
| Total Harmonic Distortion, THD + N                       | 0.03  |                        | %       | $R_L = 32 \Omega$ , f = 20 Hz to 20 kHz, Vs = 1.5 V p-p                                            |
| Insertion Loss                                           | -0.03 |                        | dB typ  | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                                   |
| –3 dB Bandwidth                                          | 18    |                        | MHz typ | $R_L = 50 \Omega$ , $C_L = 5 pF$ ; see Figure 26                                                   |
| Cs (OFF)                                                 | 110   |                        | pF typ  |                                                                                                    |
| C <sub>D</sub> , C <sub>S</sub> (ON)                     | 300   |                        | pF typ  |                                                                                                    |
| POWER REQUIREMENTS                                       |       |                        |         | V <sub>DD</sub> = 3.6 V                                                                            |
| lod                                                      | 0.003 |                        | μA typ  | Digital inputs = 0 V or 3.6 V                                                                      |
|                                                          |       | 1                      | µA max  |                                                                                                    |

 $^1$  Temperature range of the B version is  $-40^\circ C$  to  $+85^\circ C.$   $^2$  Guaranteed by design, not subject to production test.

### **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25^{\circ}C$ , unless otherwise noted.

#### Table 5.

| Parameter                                | Rating                                             |
|------------------------------------------|----------------------------------------------------|
| V <sub>DD</sub> to GND                   | –0.3 V to +6 V                                     |
| Analog Inputs <sup>1</sup>               | -0.3 V to V <sub>DD</sub> + 0.3 V                  |
| Digital Inputs <sup>1</sup>              | –0.3 V to 6 V or 10 mA<br>(whichever occurs first) |
| Peak Current, S or D                     |                                                    |
| 5 V Operation                            | 600 mA (pulsed at<br>1 ms, 10% duty cycle max)     |
| Continuous Current, S or D               |                                                    |
| 5 V Operation                            | 400 mA                                             |
| Operating Temperature Range              |                                                    |
| Industrial (B Version)                   | –40°C to +85°C                                     |
| Storage Temperature Range                | –65°C to +150°C                                    |
| Junction Temperature                     | 150°C                                              |
| 10-Lead MSOP Package                     |                                                    |
| $\theta_{JA}$ Thermal Impedance          | 206°C/W                                            |
| $\theta_{JC}$ Thermal Impedance          | 44°C/W                                             |
| 10-Lead WLCSP Package<br>(4-Layer Board) |                                                    |
| $\theta_{JA}$ Thermal Impedance          | 120°C/W                                            |
| 10-Lead LFCSP Package<br>(4-Layer Board) |                                                    |
| $\theta_{JA}$ Thermal Impedance          | 76°C/W                                             |
| $\theta_{JC}$ Thermal Impedance          | 13.5°C/W                                           |
| IR Reflow, Peak Temperature <20 s        | 235℃                                               |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

<sup>1</sup> Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

#### **ESD CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



### **PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS**



Figure 2. LFCSP and MSOP Pin Configuration



Figure 5. WLCSF Fill Configurat

#### Table 6. Pin Function Descriptions

| Pin No.               |    |                 |                                             |  |  |
|-----------------------|----|-----------------|---------------------------------------------|--|--|
| FCSP, MSOP WLCSP Mnei |    | Mnemonic        | Description                                 |  |  |
| 1                     | 7  | V <sub>DD</sub> | Most Positive Power Supply Potential.       |  |  |
| 2                     | 8  | S1A             | Source Terminal. May be an input or output. |  |  |
| 3                     | 9  | D1              | Drain Terminal. May be an input or output.  |  |  |
| 4                     | 10 | IN1             | Logic Control Input.                        |  |  |
| 5                     | 1  | S1B             | Source Terminal. May be an input or output. |  |  |
| 6                     | 2  | GND             | Ground (0 V) Reference.                     |  |  |
| 7                     | 3  | S2B             | Source Terminal. May be an input or output. |  |  |
| 8                     | 4  | IN2             | Login Control Input.                        |  |  |
| 9                     | 5  | D2              | Drain Terminal. May be an input or output.  |  |  |
| 10                    | 6  | S2A             | Source Terminal. May be an input or output. |  |  |

### **TYPICAL PERFORMANCE CHARACTERISTICS**

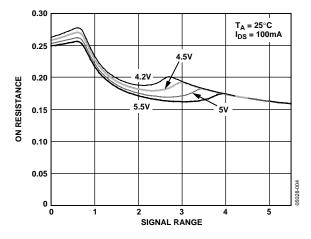



Figure 4. On Resistance vs.  $V_D$  (V<sub>s</sub>),  $V_{DD}$  = 4.2 V to 5.5 V

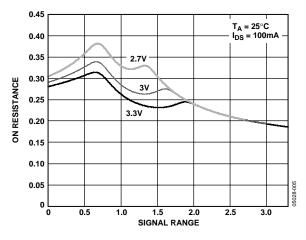



Figure 5. On Resistance vs.  $V_D$  (V<sub>s</sub>),  $V_{DD}$  = 2.7 V to 3.3 V

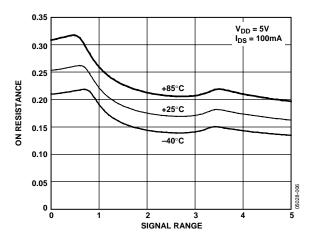



Figure 6. On Resistance vs.  $V_D$  (V<sub>s</sub>) for Different Temperature,  $V_{DD} = 5 V$ 

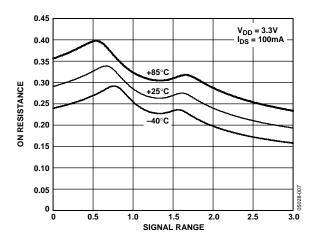



Figure 7. On Resistance vs.  $V_D$  (V<sub>s</sub>) for Different Temperature,  $V_{DD}$  = 3.3 V

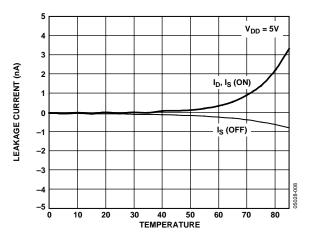



Figure 8. Leakage Current vs. Temperature,  $V_{DD} = 5 V$ 

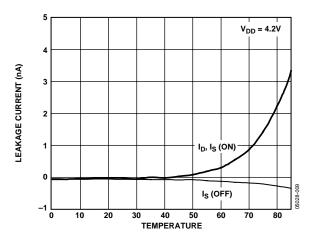



Figure 9. Leakage Current vs. Temperature,  $V_{DD} = 4.2 V$ 

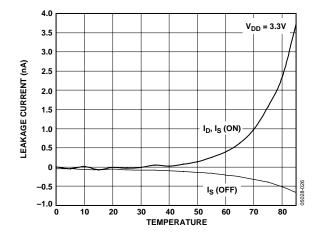
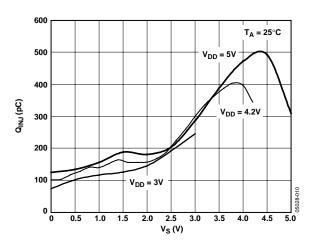




Figure 10. Leakage Current vs. Temperature,  $V_{DD} = 3.3 V$ 





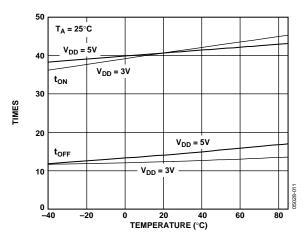
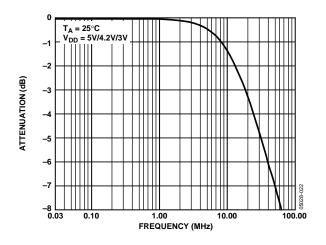
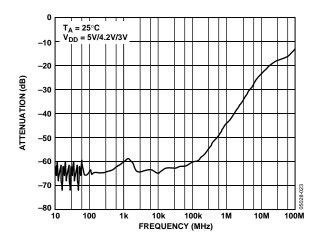
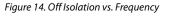






Figure 12. ton/toff Times vs. Temperature









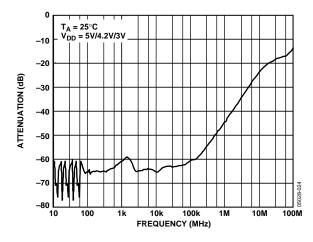
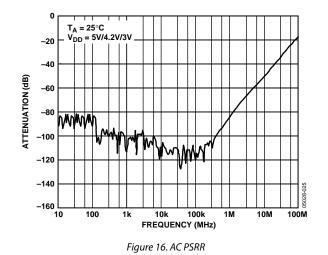




Figure 15. Crosstalk vs. Frequency



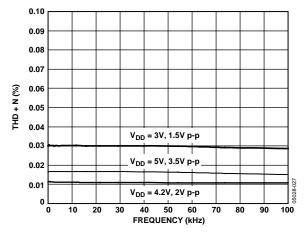



Figure 17. THD + N

#### TERMINOLOGY

IDD Positive supply current.

V<sub>D</sub> (V<sub>s</sub>) Analog voltage on Terminals D, S.

 $R_{\rm ON}$  Ohmic resistance between D and S.

**R**<sub>FLAT</sub> (**ON**) The difference between the maximum and minimum values of on resistance as measured on the switch.

 $\Delta R_{\text{ON}}$  On resistance match between any two channels.

Is (OFF) Source leakage current with the switch off.

 $\mathbf{I}_{\mathrm{D}}$  (OFF) Drain leakage current with the switch off.

 $\mathbf{I}_{\mathrm{D}},\,\mathbf{I}_{\mathrm{S}}\left(\mathbf{ON}\right)$  Channel leakage current with the switch on.

 $V_{\mbox{\scriptsize INL}}$  Maximum input voltage for Logic 0.

V<sub>INH</sub> Minimum input voltage for Logic 1.

I<sub>INL</sub> (I<sub>INH</sub>) Input current of the digital input.

Cs (OFF) Off switch source capacitance. Measured with reference to ground.

 $C_D$  (OFF) Off switch drain capacitance. Measured with reference to ground. C<sub>D</sub>, C<sub>s</sub> (ON) On switch capacitance. Measured with reference to ground.

C<sub>IN</sub> Digital input capacitance.

**t**<sub>ON</sub> Delay time between the 50% and 90% points of the digital input and switch on condition.

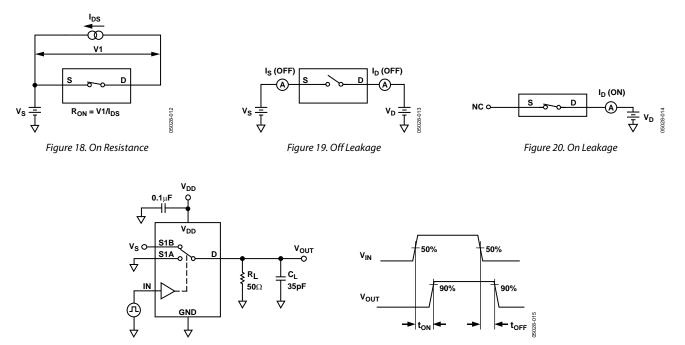
**t**<sub>OFF</sub> Delay time between the 50% and 90% points of the digital input and switch off condition.

 $t_{BBM}$ On or off time measured between the 80% points of both switches when switching from one to another.

**Charge Injection** Measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

**Off Isolation** Measure of unwanted signal coupling through an off switch.

**Crosstalk** Measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.


**-3 dB Bandwidth** Frequency at which the output is attenuated by 3 dB.

**On Response** Frequency response of the on switch.

**Insertion Loss** The loss due to the on resistance of the switch.

**THD + N** Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

### **TEST CIRCUITS**



#### Figure 21. Switching Times, tor, torf

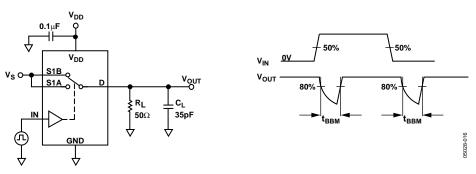



Figure 22. Break-Before-Make Time Delay, t<sub>BBM</sub>

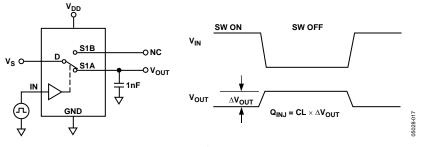



Figure 23. Charge Injection

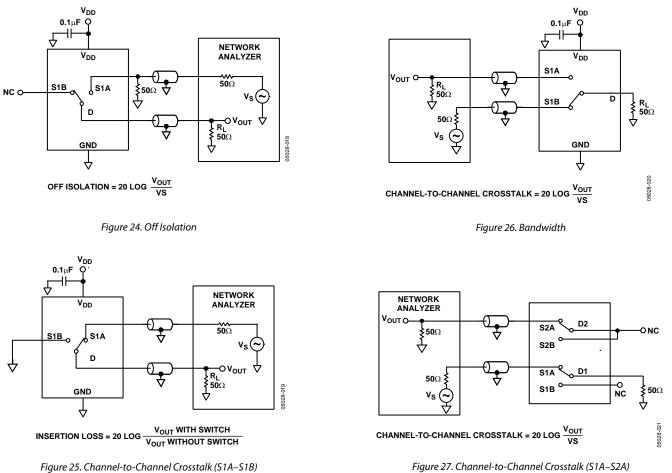



Figure 25. Channel-to-Channel Crosstalk (S1A–S1B)

#### **OUTLINE DIMENSIONS**

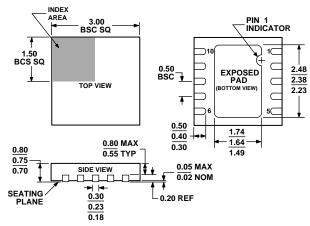
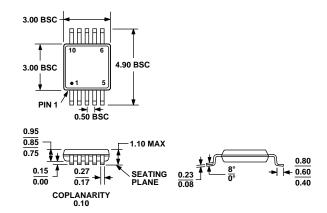




Figure 28. 10-Lead Lead Frame Chip Scale Package [LFCSP\_WD] 3 x 3 mm Body, Very Very Thin, Dual Lead (CP-10-9) Dimensions shown in millimeters



COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 29. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

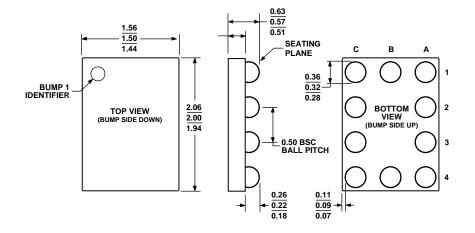



Figure 30. 10-Ball Wafer Level Chip Scale Package [WLCSP] (CB-10) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model                             | Temperature Range | Package Description                      | Package Option | Branding <sup>1</sup> |
|-----------------------------------|-------------------|------------------------------------------|----------------|-----------------------|
| ADG884BRMZ <sup>2</sup>           | -40°C to +85°C    | Mini Small Outline Package (MSOP)        | RM-10          | S9C                   |
| ADG884BRMZ-REEL <sup>2</sup>      | -40°C to +85°C    | Mini Small Outline Package (MSOP)        | RM-10          | S9C                   |
| ADG884BRMZ-REEL7 <sup>2</sup>     | -40°C to +85°C    | Mini Small Outline Package (MSOP)        | RM-10          | S9C                   |
| ADG884BCPZ-REEL <sup>2</sup>      | -40°C to +85°C    | Lead Frame Chip Scale Package (LFCSP_WD) | CP-10-9        | S9C                   |
| ADG884BCPZ-REEL7 <sup>2</sup>     | -40°C to +85°C    | Lead Frame Chip Scale Package (LFCSP_WD) | CP-10-9        | S9C                   |
| ADG884BCBZ-500RL7 <sup>2, 3</sup> | -40°C to +85°C    | Micro Chip Scale Package (WLCSP)         | CB-10          | SOW                   |
| ADG884BCBZ-REEL <sup>2, 3</sup>   | -40°C to +85°C    | Micro Chip Scale Package (WLCSP)         | CB-10          | SOW                   |
| ADG884BCBZ-REEL7 <sup>2, 3</sup>  | -40°C to +85°C    | Micro Chip Scale Package (WLCSP)         | CB-10          | SOW                   |

 $^1$  Branding on this package is limited to three characters due to space constraints.  $^2$  Z = Pb-free package.  $^3$  Contact Sales for availability; product under development.

### NOTES

www.analog.com



© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05028–0–6/05(A)

Rev. A | Page 16 of 16