Isolated, Single-Channel RS-232 Line Driver/Receiver

FEATURES

2.5 kV fully isolated (power and data) RS-232 transceiver
isoPower integrated, isolated dc-to-dc converter
460 kbps data rate
1 Tx and 1 Rx
Meets EIA/TIA-232E specifications
ESD protection on Rin and Tout pins
$\pm 8 \mathrm{kV}$: contact discharge
$\pm 15 \mathrm{kV}$: air gap discharge
$0.1 \mu \mathrm{~F}$ charge pump capacitors
High common-mode transient immunity: >25 kV/ $\mu \mathrm{s}$
Safety and regulatory approvals
UL recognition
2500 V rms for 1 minute per UL 1577
VDE Certificate of Conformity
DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01
CSA Component Acceptance Notice \#5A
Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Wide body, 20-lead SOIC package

APPLICATIONS

High noise data communications
Industrial communications
General-purpose RS-232 data links
Industrial/telecommunications diagnostic ports
Medical equipment

GENERAL DESCRIPTION

The ADM3251E is a high speed, 2.5 kV fully isolated, singlechannel RS-232/V. 28 transceiver device that operates from a single 5 V power supply. Due to the high ESD protection on the R_{IN} and $\mathrm{T}_{\text {out }}$ pins, the device is ideally suited for operation in electrically harsh environments or where RS-232 cables are frequently being plugged and unplugged.
The ADM3251E incorporates dual-channel digital isolators with isoPower ${ }^{\text {m" }}$ integrated, isolated power. There is no requirement to use a separate isolated dc-to-dc converter. Chip-scale transformer iCoupler ${ }^{\bullet}$ technology from Analog Devices, Inc., is used both for the isolation of the logic signals as well as for the integrated dc-to-dc converter. The result is a total isolation solution.

The ADM3251E contains isoPower technology that uses high frequency switching elements to transfer power through the

Rev. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
transformer. Special care must be taken during printed circuit board (PCB) layout to meet emissions standards. Refer to Application Note AN-0971, Control of Radiated Emissions with isoPower Devices, for details on board layout considerations.
The ADM3251E conforms to the EIA/TIA-232E and ITU-T V. 28 specifications and operates at data rates up to 460 kbps .

Four external $0.1 \mu \mathrm{~F}$ charge pump capacitors are used for the voltage doubler/inverter, permitting operation from a single 5 V supply.
The ADM3251E is available in a 20-lead, wide body SOIC package and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

[^0]
ADM3251E

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Package Characteristics 5
Regulatory Information 5
Insulation and Safety-Related Specifications 5
DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01 Insulation Characteristics 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 9
REVISION HISTORY
5/10—Rev. D to Rev. E
Changes to Features Section 1
Changes to Table 4 5
3/10—Rev. C to Rev. D
Changes to Features and General Description Sections. 1
Changes to Table 4 and Table 5 5
Changed DIN V VDE V 0884-10 (VDE V 0884-10):2006-12Insulation Characteristics (Pending) Heading to DIN EN60747-5-2 (VDE 0884 Teil 2): 2003-01 Insulation
Characteristics 6
Changes to Pollution Degree and Input-to-Output Test Voltage Parameters, Table 6 6
Added Applications Information Section and Example PCB for Reduced EMI Section 13
Added Table 9 and Table 10; Renumbered Sequentially 13
Changes to PCB Layout Section 13
Added Isolated Power Supply Circuit Section 14
Added Figure 22; Renumbered Sequentially 14
1/10—Rev. B to Rev. C
Changes to Table 4 5
Theory of Operation 11
Isolation of Power and Data 11
Charge Pump Voltage Converter 12
5.0 V Logic to EIA/TIA-232E Transmitter 12
EIA/TIA-232E to 5 V Logic Receiver 12
High Baud Rate. 12
Thermal Analysis 12
Insulation Lifetime 12
Applications Information 13
PCB Layout 13
Example PCB for Reduced EMI 13
Isolated Power Supply Circuit 14
Outline Dimensions 15
Ordering Guide 15
11/09—Rev. A to Rev. B
Changes to Figure 1 1
Changed to Primary Side Supply Input Current, $\mathrm{I}_{\mathrm{CC}(\mathrm{DISAbLE})}$ Maximum Limit to 2.5 mA 4
Changes to Table 45
Changes to Figure 13 11
9/08-Rev. 0 to Rev. A
Changes to Timing Parameters in Table 1 3
Changes to Timing Parameters in Table 2 4
Changes to Ordering Guide. 14

SPECIFICATIONS

All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating range; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (dc-to-dc converter enabled), unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DC CHARACTERISTICS V $\subset \subset$ Operating Voltage Range DC-to-DC Converter Enable Threshold, Vcc(enable) ${ }^{1}$ DC-to-DC Converter Disable Threshold, VCC(DISABLE) ${ }^{1}$ DC-to-DC Converter Enabled Input Supply Current, Ic(enable) $V_{\text {Iso }}$ Output ${ }^{2}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	5.0	$\begin{aligned} & 5.5 \\ & 3.7 \\ & 110 \\ & 145 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \text { no load } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{ISO}}=0 \mu \mathrm{~A} \end{aligned}$
LOGIC Transmitter Input, Tin Logic Input Current, I ITN Logic Low Input Threshold, $\mathrm{V}_{\text {TINL }}$ Logic High Input Threshold, $\mathrm{V}_{\mathrm{TINH}}$ Receiver Output, Rout Logic High Output, $\mathrm{V}_{\text {Routh }}$ Logic Low Output, V ${ }_{\text {Rout }}$	$\begin{aligned} & -10 \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{cc}}-0.1 \\ & \mathrm{~V}_{\mathrm{cc}}-0.5 \end{aligned}$	$\begin{aligned} & +0.01 \\ & \\ & \\ & V_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}-0.3 \\ & 0.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & +10 \\ & 0.3 \mathrm{~V} \mathrm{Cc} \end{aligned}$	$\mu \mathrm{A}$ V V V V V V	$\begin{aligned} & \mathrm{I}_{\text {ROUTH }}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {ROUTH }}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\text {ROUTH }}=20 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {ROUTH }}=4 \mathrm{~mA} \end{aligned}$
RS-232 Receiver, RIN EIA-232 Input Voltage Range ${ }^{3}$ EIA-232 Input Threshold Low EIA-232 Input Threshold High EIA-232 Input Hysteresis EIA-232 Input Resistance Transmitter, Tout Output Voltage Swing (RS-232) Transmitter Output Resistance Output Short-Circuit Current (RS-232)	$\begin{aligned} & -30 \\ & 0.6 \\ & \\ & 3 \\ & \pm 5 \\ & 300 \end{aligned}$	2.0 2.1 0.1 5 ± 5.7 ± 12	$+30$ 2.4 7	V V V V $\mathrm{k} \Omega$ V Ω mA	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\text {Iso }}=0 \mathrm{~V} \end{aligned}$
TIMING CHARACTERISTICS Maximum Data Rate Receiver Propagation Delay $\mathrm{t}_{\text {PHL }}$ tpLh Transmitter Propagation Delay Transmitter Skew Receiver Skew Transition Region Slew Rate ${ }^{3}$	460 5.5	190 135 650 80 70 10	30	kbps ns ns ns ns ns $\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { to } 1000 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & +3 \mathrm{~V} \text { to }-3 \mathrm{~V} \text { or }-3 \mathrm{~V} \text { to }+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=+3.3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
AC SPECIFICATIONS Output Rise/Fall Time, $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ (10% to 90%) Common-Mode Transient Immunity at Logic High Output ${ }^{4}$ Common-Mode Transient Immunity at Logic Low Output ${ }^{4}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	2.3		ns $\mathrm{kV} / \mu \mathrm{s}$ kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS} \text { signal levels } \\ & \mathrm{V}_{\mathrm{CM}}=1 \mathrm{kV} \text {, transient magnitude }=800 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{kV} \text {, transient magnitude }=800 \mathrm{~V} \end{aligned}$
ESD PROTECTION (Rin And Tout PINS)		$\begin{aligned} & \pm 15 \\ & \pm 8 \end{aligned}$		$\begin{aligned} & \text { kV } \\ & \text { kV } \end{aligned}$	Human body model air discharge Human body model contact discharge

[^1]
ADM3251E

All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating range; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (dc-to-dc converter disabled), and the secondary side is powered externally by $\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$, unless otherwise noted.

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DC CHARACTERISTICS					
$V_{C C}$ Operating Voltage Range	3.0		3.7	V	
DC-to-DC Converter Disable Threshold, $\mathrm{VcCc}_{\text {cisable) }}{ }^{1}$			3.7	V	
DC-to-DC Converter Disabled					
VISO ${ }^{2}$	3.0		5.5	V	
Primary Side Supply Input Current, ICC(DISABLE)			2.5	mA	No load
Secondary Side Supply Input Current, IISo(Disable)			12	mA	$\mathrm{V}_{\text {ISO }}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$
Secondary Side Supply Input Current, $\mathrm{I}_{\text {ISO(DISABLE) }}$		6.2		mA	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$
LOGIC					
Transmitter Input, $\mathrm{T}_{\text {IN }}$					
Logic Input Current, $\mathrm{I}_{\text {TiN }}$	-10	+0.01	+10	$\mu \mathrm{A}$	
Logic Low Input Threshold, $\mathrm{V}_{\text {tinl }}$			0.3 Vcc	V	
Logic High Input Threshold, $\mathrm{V}_{\text {TINH }}$	0.7 V cc			V	
Receiver Output, Rout					
Logic High Output, V V 隹	$V_{\text {cc }}-0.1$	Vcc		V	$\mathrm{I}_{\text {ROUTH }}=-20 \mu \mathrm{~A}$
	$V_{\text {cc }}-0.5$	$V_{\text {cc }}-0.3$		V	$\mathrm{I}_{\text {ROUTH }}=-4 \mathrm{~mA}$
Logic Low Output, $\mathrm{V}_{\text {ROUTL }}$		0.0	0.1	V	$\mathrm{I}_{\text {ROUTH }}=20 \mu \mathrm{~A}$
		0.3	0.4	V	$\mathrm{I}_{\text {ROUTH }}=4 \mathrm{~mA}$
RS-232					
Receiver, RiN					
EIA-232 Input Voltage Range ${ }^{3}$	-30		+30	V	
EIA-232 Input Threshold Low	0.6	1.3		V	
EIA-232 Input Threshold High		1.6	2.4	V	
EIA-232 Input Hysteresis		0.3		V	
EIA-232 Input Resistance	3	5	7	$k \Omega$	
Transmitter, Tout					
Output Voltage Swing (RS-232)	± 5	± 5.7		V	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND
Transmitter Output Resistance	300			Ω	$\mathrm{V}_{\text {ISO }}=0 \mathrm{~V}$
Output Short-Circuit Current (RS-232)		± 11		mA	
TIMING CHARACTERISTICS					
Maximum Data Rate	460			kbps	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to 1000 pF
Receiver Propagation Delay					
$\mathrm{t}_{\text {PHL }}$		190		ns	
$\mathrm{t}_{\text {PLH }}$		135		ns	
Transmitter Propagation Delay		650		ns	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$
Transmitter Skew		80		ns	
Receiver Skew		55		ns	
Transition Region Slew Rate ${ }^{3}$	5.5	10	30	$\mathrm{V} / \mathrm{\mu s}$	$\begin{aligned} & +3 \mathrm{~V} \text { to }-3 \mathrm{~V} \text { or }-3 \mathrm{~V} \text { to }+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC}}=3.3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
AC SPECIFICATIONS					
Output Rise/Fall Time, $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ (10\% to 90\%)		2.3		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{4}$	25			$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{kV}$, transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{4}$	25			kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{kV}$, transient magnitude $=800 \mathrm{~V}$
ESD PROTECTION ($\mathrm{RIN}^{\text {AND Tout }}$ PINS)		$\begin{aligned} & \pm 15 \\ & \pm 8 \end{aligned}$		$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	Human body model air discharge Human body model contact discharge

[^2]
PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output)	$\mathrm{R}_{-\mathrm{O}}$		10^{12}	Ω		
Capacitance (Input-to-Output)	$\mathrm{C}_{1-\mathrm{O}}$		2.2	pF	$\mathrm{f}=1 \mathrm{MHz}$	
Input Capacitance	C_{I}		4.0	pF		
IC Junction-to-Air Thermal Resistance	θ_{JA}		47.05	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

REGULATORY INFORMATION

Table 4.

UL 1	VDE 2	CSA
Recognized under 1577 Component	Certified according to DIN EN 60747-5-2 (VDE	Approved under CSA Component Acceptance
Recognition Program	0884 Teil 2):2003-01	Notice \#5A
File E214100	File 2471900-4880-0001/123328	Basic Insulation per CSA 60950-1-07 and IEC
		$60950-1,400 \mathrm{~V} \mathrm{rms} \mathrm{(566} \mathrm{~V} \mathrm{peak)} \mathrm{maximum}$
		working voltage
		File 2268268

${ }^{1}$ In accordance with UL 1577 , each ADM3251E is proof-tested by applying an insulation test voltage $\geq 3000 \mathrm{Vrms}$ for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ Each ADM3251E is proof tested by applying an insulation test voltage $\geq 4000 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit =5pC).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 5.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(101)	7.7	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	4.16	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017	mm	Distance through insulation
Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	$\begin{aligned} & >175 \\ & \text { Illa } \end{aligned}$	V	DIN IEC 112/VDE 0303 Part 1
Maximum Working Voltage Compatible with 50-Year Service Life	VIorm	425	V peak	Continuous peak voltage across the isolation barrier

ADM3251E

DIN EN 60747-5-2 (VDE 0884 TEIL 2): 2003-01 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

Table 6.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
Climatic Classification			40/105/21	
Pollution Degree			2	
Maximum Working Insulation Voltage		VIORM	424	\checkmark peak
Input-to-Output Test Voltage				
Method b1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	V_{PR}	795	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Supply Current		$\mathrm{I}_{\text {S }}$	531	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

ADM3251E

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Rating
$\mathrm{V}_{\mathrm{Cc},} \mathrm{V}_{\text {Iso }}$	-0.3 V to +6 V
$\mathrm{~V}_{+}$	$\left(\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}\right)$ to +13 V
$\mathrm{~V}-$	-13 V to +0.3 V
Input Voltages	
T_{IN}	-0.3 V to $\left(\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}\right)$
R_{IN}	$\pm 30 \mathrm{~V}$
Output Voltages	
\quad Tout	$\pm 15 \mathrm{~V}$
\quad Rout	-0.3 V to $\left(\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}\right)$
Short-Circuit Duration	
\quad Tout	
Power Dissipation	$47.05^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Ja }}$, Thermal Impedance	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Industrial	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$
Pb-Free Temperature (Soldering, 30 sec$)$	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADM3251E

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	No Connect. This pin should always remain unconnected.
2,3	V cc	Power Supply Input. A $0.1 \mu \mathrm{~F}$ decoupling capacitor is required between $\mathrm{V}_{c c}$ and ground. When a voltage between 4.5 V and 5.5 V is applied to the $\mathrm{V}_{\mathrm{cc}} \mathrm{pin}$, the integrated dc-to-dc converter is enabled. If this voltage is lowered to between 3.0 V and 3.7 V , the integrated dc-to-dc converter is disabled.
4, 5, 6, 7, 10	GND	Ground.
8	Rout	Receiver Output. This pin outputs CMOS logic levels.
9	TIN	Transmitter (Driver) Input. This pin accepts TTL/CMOS levels.
11	GND ${ }_{\text {Iso }}$	Ground Reference for Isolator Primary Side.
12	V-	Internally Generated Negative Supply.
13, 14	C2-, $\mathrm{C} 2+$	Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C2 is connected between these pins; a $0.1 \mu \mathrm{~F}$ capacitor is recommended, but larger capacitors up to $10 \mu \mathrm{~F}$ can be used.
15	Rin	Receiver Input. This input accepts RS-232 signal levels.
16	Tout	Transmitter (Driver) Output. This outputs RS-232 signal levels.
17, 18	C1-, $\mathrm{C} 1+$	Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C1 is connected between these pins; a $0.1 \mu \mathrm{~F}$ capacitor is recommended, but larger capacitors up to $10 \mu \mathrm{~F}$ can be used.
19	V+	Internally Generated Positive Supply.
20	Viso	Isolated Supply Voltage for Isolator Secondary Side. A $0.1 \mu \mathrm{~F}$ decoupling capacitor is required between $\mathrm{V}_{\text {Iso }}$ and ground. When the integrated dc-to-dc converter is enabled, the $\mathrm{V}_{\text {Iso }}$ pin should not be used to power external circuitry. If the integrated dc-to-dc converter is disabled, power the secondary side by applying a voltage in the range of 3.0 V to 5.5 V to this pin.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Transmitter Output Voltage High/Low vs. Load Capacitance at 460 kbps

Figure 4. Transmitter Output Voltage High/Low vs. $V_{c c,} R_{L}=3 \mathrm{k} \Omega$

Figure 5. Transmitter Output Voltage High/Low vs. VISo, $R_{L}=3 \mathrm{k} \Omega$

Figure 6. Transmitter Output Voltage High/Low vs. Load Current

Figure 7. Charge Pump V+, V- vs. Load Current

Figure 8. Charge Pump Impedance vs. Vcc

ADM3251E

Figure 9. Charge Pump Impedance vs. VISO

Figure 10. Primary Supply Current vs. Data Rate

Figure 11.460 kbps Data Transmission

Figure 12. TIN Voltage Threshold vs. VCc

THEORY OF OPERATION

The ADM3251E is a high speed, 2.5 kV fully isolated, singlechannel RS-232 transceiver device that operates from a single power supply.
The internal circuitry consists of the following main sections:

- Isolation of power and data
- A charge pump voltage converter
- A 5.0 V logic to EIA/TIA-232E transmitter
- A EIA/TIA-232E to 5.0 V logic receiver

Figure 13. Functional Block Diagram

ISOLATION OF POWER AND DATA

The ADM3251E incorporates a dc-to-dc converter section, which works on principles that are common to most modern power supply designs. $V_{\text {CC }}$ power is supplied to an oscillating circuit that switches current into a chip-scale air core transformer. Power is transferred to the secondary side, where it is rectified to a high dc voltage. The power is then linearly regulated to about 5.0 V and supplied to the secondary side data section and to the Viso pin. The Viso pin should not be used to power external circuitry.
Because the oscillator runs at a constant high frequency independent of the load, excess power is internally dissipated in the output voltage regulation process. Limited space for transformer coils and components also adds to internal power dissipation. This results in low power conversion efficiency.
The ADM3251E can be operated with the dc-to-dc converter enabled or disabled. The internal dc-to-dc converter state of the ADM3251E is controlled by the input V_{CC} voltage. In normal operating mode, V_{CC} is set between 4.5 V and 5.5 V and the internal dc-to-dc converter is enabled. To disable the dc-to-dc converter, lower V_{CC} to a value between 3.0 V and 3.7 V. In this mode, the user must externally supply isolated power to the $\mathrm{V}_{\text {Iso }}$ pin. An isolated secondary side voltage of between 3.0 V and 5.5 V and a secondary side input current, $\mathrm{I}_{\text {ISO }}$, of 12 mA (maximum) is required on the $\mathrm{V}_{\text {ISO }}$ pin. The signal channels of the ADM3251E then continue to operate normally.

The $\mathrm{T}_{\text {in }}$ pin accepts TTL/CMOS input levels. The driver input signal that is applied to the $\mathrm{T}_{\text {IN }}$ pin is referenced to logic ground (GND). It is coupled across the isolation barrier, inverted, and then appears at the transceiver section, referenced to isolated ground (GND ${ }_{\text {Iso }}$). Similarly, the receiver input (R_{IN}) accepts RS-232 signal levels that are referenced to isolated ground. The R_{IN} input is inverted and coupled across the isolation barrier to appear at the Rout pin, referenced to logic ground.
The digital signals are transmitted across the isolation barrier using iCoupler technology. Chip-scale transformer windings couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer of the winding. At the secondary winding, the induced waveforms are decoded into the binary value that was originally transmitted.
There is hysteresis in the V_{CC} input voltage detect circuit. Once the dc-to-dc converter is active, the input voltage must be decreased below the turn-on threshold to disable the converter. This feature ensures that the converter does not go into oscillation due to noisy input power.

Figure 14. Typical Operating Circuit with the DC-to-DC Converter Enabled $\left(V_{C C}=4.5 \mathrm{~V}\right.$ to 5.5 V)

Figure 15. Typical Operating Circuit with the DC-to-DC Converter Disabled (V cc $=3.0 \mathrm{~V}$ to 3.7 V)

ADM3251E

CHARGE PUMP VOLTAGE CONVERTER

The charge pump voltage converter consists of a 200 kHz oscillator and a switching matrix. The converter generates a $\pm 10.0 \mathrm{~V}$ supply from the input 5.0 V level. This is done in two stages by using a switched capacitor technique as illustrated in Figure 16 and Figure 17. First, the 5.0 V input supply is doubled to 10.0 V by using C 1 as the charge storage element. The +10.0 V level is then inverted to generate -10.0 V using C 2 as the storage element. C3 is shown connected between $\mathrm{V}+$ and $\mathrm{V}_{\text {ISO }}$, but is equally effective if connected between $\mathrm{V}+$ and $\mathrm{GND}_{\text {Iso }}$.
Capacitor C3 and Capacitor C4 are used to reduce the output ripple. Their values are not critical and can be increased, if desired. Larger capacitors (up to $10 \mu \mathrm{~F}$) can be used in place of C1, C2, C3, and C4.

5.0 V LOGIC TO EIA/TIA-232E TRANSMITTER

The transmitter driver converts the 5.0 V logic input levels into RS-232 output levels. When driving an RS-232 load with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, the output voltage swing is typically $\pm 10 \mathrm{~V}$.

Figure 16. Charge Pump Voltage Doubler

Figure 17. Charge Pump Voltage Inverter

EIA/TIA-232E TO 5 V LOGIC RECEIVER

The receiver is an inverting level-shifter that accepts the RS-232 input level and translates it into a 5.0 V logic output level. The input has an internal $5 \mathrm{k} \Omega$ pull-down resistor to ground and is also protected against overvoltages of up to $\pm 30 \mathrm{~V}$. An unconnected input is pulled to 0 V by the internal $5 \mathrm{k} \Omega$ pull-down resistor. This, therefore, results in a Logic 1 output level for an unconnected input or for an input connected to GND. The receiver has a Schmitt-trigger input with a hysteresis level of 0.1 V. This ensures error-free reception for both a noisy input and for an input with slow transition times.

HIGH BAUD RATE

The ADM3251E offers high slew rates, permitting data transmission at rates well in excess of the EIA/TIA-232E specifications. The RS- 232 voltage levels are maintained at data rates up to 460 kbps.

THERMAL ANALYSIS

Each ADM3251E device consists of three internal die, attached to a split-paddle lead frame. For the purposes of thermal analysis, it is treated as a thermal unit with the highest junction temperature reflected in the $\theta_{J A}$ value from Table 7 . The value of $\theta_{\text {JA }}$ is based on measurements taken with the part mounted on a JEDEC standard 4-layer PCB with fine-width traces in still air. Following the recommendations in the PCB Layout section decreases the thermal resistance to the PCB, allowing increased thermal margin at high ambient temperatures.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADM3251E.
The insulation lifetime of the ADM3251E depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 18, Figure 19, and Figure 20 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower.

Figure 18. Bipolar AC Waveform

Figure 19. Unipolar AC Waveform

RATED PEAK VOLTAGE

Figure 20. DC Waveform Outline Dimensions

APPLICATIONS INFORMATION

PCB LAYOUT

The ADM3251E requires no external circuitry for its logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 21). Bypass capacitors are conveniently connected between Pin 3 and Pin 4 for $V_{C C}$ and between Pin 19 and Pin 20 for $V_{\text {ISo }}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .

Because it is not possible to apply a heat sink to an isolation device, the device primarily depends on heat dissipating into the PCB through the ground pins. If the device is used at high ambient temperatures, care should be taken to provide a thermal path from the ground pins to the PCB ground plane. The board layout in Figure 21 shows enlarged pads for Pin 4, Pin 5, Pin 6, Pin 7, Pin 10, and Pin 11. Multiple vias should be implemented from each of the pads to the ground plane, which significantly reduce the temperatures inside the chip. The dimensions of the expanded pads are left to the discretion of the designer and the available board space.

Figure 21. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side.
The power supply section of the ADM3251E uses a 300 MHz oscillator frequency to pass power through its chip-scale transformers. Operation at these high frequencies may raise concerns about radiated emissions and conducted noise. PCB layout and construction is a very important tool for controlling radiated emissions. Refer to Application Note AN-0971, Control of Radiated Emissions with isoPower Devices, for extensive guidance on radiation mechanisms and board layout considerations.

EXAMPLE PCB FOR REDUCED EMI

The choice of how aggressively EMI must be addressed for a design to pass emissions levels depends on the requirements of the design as well as cost and performance trade-offs.

The starting point for this example is a 2-layer PCB. EMI reductions are relative to the emissions and noise from this board. To conform to FCC Class B levels, the emissions at these two frequencies must be less than $46 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$, normalized to 3 m antenna distance. As expected, EMI testing confirmed that the largest emissions peaks occur at the tank frequency and rectifier frequency.
A 6-layer PCB that employs edge guarding and buried capacitive bypassing, which are EMI mitigation techniques described in detail in Application Note AN-0971, was manufactured. The stackup of the 6-layer test PCB is shown in Table 9. PCB layout Gerber files are available upon request.

Table 9. PCB Layers

Layer	Description
Top	Components and ground planes
Inner Layer 1	Vcc planes
Inner Layer 2	All tracks
Inner Layer 3	Blank
Inner Layer 4	Buried capacitive plane
Bottom	Ground planes

EMI testing was repeated on the optimized board. The resulting reduction in radiated emissions is shown in Table 10. This board meets FCC Class B standards with no external shielding by utilizing buried stitching capacitors and edge fencing.

Table 10. EMI Test Results

EMI Test Results	$\mathbf{3 0 0} \mathbf{~ M H z}$	$\mathbf{6 0 0} \mathbf{~ M H z}$
2-Layer PCB Emissions	48 dB	53 dB
6-Layer PCB Emissions	36 dB	32 dB
Achieved EMI Reduction	12 dB	21 dB

ADM3251E

ISOLATED POWER SUPPLY CIRCUIT

To operate the ADM3251E with its internal dc-to-dc converter disabled, connect a voltage of between 3.0 V and 3.7 V to the V_{CC} pin and apply an isolated power of between 3.0 V and 5.5 V to the $\mathrm{V}_{\text {Iso }}$ pin, referenced to $\mathrm{GND}_{\text {Iso. }}$.
A transformer driver circuit with a center-tapped transformer and LDO can be used to generate the isolated supply, as shown in Figure 22. The center-tapped transformer provides electrical isolation of the 5 V power supply. The primary winding of the transformer is excited with a pair of square waveforms that are 180° out of phase with each other. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The ADP3330 linear voltage regulator provides a regulated power supply to the bus side circuitry ($\mathrm{V}_{\text {Iso }}$) of the ADM3251E.

Figure 22. Isolated Power Supply Circuit

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 23. 20-Lead Standard Small Outline Package [SOIC_W]
Wide Body (RW-20)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADM3251EARWZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Standard Small Outline Package [SOIC_W]	RW-20
ADM3251EARWZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Standard Small Outline Package [SOIC_W]	RW-20
EVAL-ADM3251EEBZ		Evaluation Board	

[^3]
ADM3251E

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com Fax: 781.461.3113 ©2008-2010 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Enable/disable threshold is the V_{cc} voltage at which the internal dc-to-dc converter is enabled/disabled.
 ${ }^{2}$ To maintain data sheet specifications, do not draw current from $\mathrm{V}_{\text {Iso }}$.
 ${ }^{3}$ Guaranteed by design.
 ${ }^{4} \mathrm{~V}_{\mathrm{CM}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. $\mathrm{V}_{C M}$ is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^2]: ${ }^{1}$ Enable/disable threshold is the V_{cc} voltage at which the internal dc-to-dc converter is enabled/disabled.
 ${ }^{2}$ To maintain data sheet specifications, do not draw current from Viso.
 ${ }^{3}$ Guaranteed by design.
 ${ }^{4} \mathrm{~V}_{\text {CM }}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. $\mathrm{V}_{\text {CM }}$ is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^3]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

